Pojdi na vsebino

Tenzorski produkt

Iz Wikipedije, proste enciklopedije

Tenzorski produkt (oznaka ) se uporablja na zelo različnih področjih povezanih z vektorji, matrikami, tenzorji, algebrami in topološkimi vektorskimi prostori. V vseh primerih pa pomeni bilinearno operacijo. Tenzorski produkt ni komutativen.

Tenzorji

[uredi | uredi kodo]

Tenzorji so definirani tako, da jim lahko pripišemo določeno število indeksov. Indeksi so lahko kovariantni (pišemo jih spodaj) ali kontravariantni (pišemo jih zgoraj). Skupno število kovariantnih in kontravariantnih indeksov se imenuje red tenzorja (rang tenzorja), ki pa ni odvisen od števila razsežnosti prostora v katerem opazujemo tenzor. Tenzorji z redom 0 so skalarji, tisti, ki imajo red 1, so vektorji. Vse količine, ki imajo red večji ali enak 2, pa na splošno imenujemo kar tenzorji.

Tenzorski produkt vektorskih prostorov

[uredi | uredi kodo]

Tenzorski produkt dveh vektorskih prostorov in nad obsegom se lahko definira z metodo generatorjev in relacij. S tenzorskim produktom dveh vektorskih prostorov dobimo nov vektorski prostor, ki ima razsežnost enako zmnožku razsežnosti posameznih vektorskih prostorov. Podobno dobimo z množenjem celih števil novo celo število.

Tenzorski produkt dveh tenzorjev reda 1 (vektorji)

[uredi | uredi kodo]

Tenzorskemu produktu dveh tenzorjev reda 1, ki jih imenujemo vektorji, se določijo posamezne komponente na naslednji način

.

Za vrednosti je to enako

.

Tenzorski produkt dveh tenzorjev reda 2 (matrike)

[uredi | uredi kodo]

Tenzorskemu produktu dveh tenzorjev reda 2, ki so matrike, se določijo posamezne komponente takole

Tenzorski produkt pa lahko zapišemo kot

kjer je

Tenzorski produkt dveh tenzorjev

[uredi | uredi kodo]

Če sta in dva kovariantna tenzorja potem je njun tenzorski produkt enak

.

To pa pomeni, da je tenzorski produkt enak običajnemu zmnožku posameznih komponent vsakega tenzorja.

Zgled: Naj bo tenzor tipa (1,1) s komponentami in naj bo tenzor tipa (1, 0) s komponentami . Potem je

in
.

Tenzorski produkt ohrani vse indeksi tako, kot jih imajo posamezni faktorji.

Kroneckerjev produkt

[uredi | uredi kodo]
Glavni članek: Kroneckerjev produkt.

Tenzorski produkt dveh matrik se imenujemo tudi Kroneckerjev produkt.

Primer:

Tenzorski produkt dveh matrik pa je:

.

Tenzorski produkt multilinearne preslikave

[uredi | uredi kodo]

Če imamo dve multilinearni preslikavi in je njun tenzorski produkt multilinearna funkcija

.

Glej tudi

[uredi | uredi kodo]

Zunanje povezave

[uredi | uredi kodo]
  • Weisstein, Eric Wolfgang. »Vector Space Tensor Product«. MathWorld.
  • Tenzorski produkt na PlanethMath Arhivirano 2010-06-20 na Wayback Machine. (angleško)
  • Tenzorski produkt vektorskih prostorov Arhivirano 2011-08-26 na Wayback Machine. (angleško)
  • Površine tenzorskega produkta Arhivirano 2006-09-03 na Wayback Machine. (angleško)
  • Tenzorske operacije (angleško)